Wednesday, December 22, 2010

21/12 Fisiologia ¬ Motilidad intestinal










Electrical Activity of GIT Smooth Muscle


  1. Slow waves
  2. Spike potentials
  3. Changes of voltage of RMP by other factors

1-Slow waves

These are not action potential. Instead they are slow undulating changes in the resting membrane potential.
-Their intensity: 5-15 mv.
-Their frequency: varies in different parts of the human GIT from 3-12 per minute.
The precise cause of the slow waves is not understood. They do not cause muscle contraction except perhaps in the stomach.


Membrane potentials in GIT smooth muscle

2-Spike potentials

Each time the peaks of the slow waves temporarily become more positive than -40 mv, spike potentials appear on these peaks.
-The cause of these action potential is due to activation of the calcium-sodium channels.

3-Changes of voltage of the RMP

Factors that depolarize the membrane:
1-Stretching of the muscle
2-Stimulating by acetylcholine
3-Stimulation by parasympathetic nerves
4-Stimulation by several specific GI hormones.


Neural Control of GI Functions

Enteric Nervous System
-Differences between the myenteric and submucosal plexus
-Types of neurotransmitters secreted by enteric nervous system


Control of GI Motility

Autonomic control of GIT:
  1. Parasympathetic Division
  2. Sympathetic Division
Hormonal control of Gi Motility

Functional types of Movements

Propulsive Movements

-Peristaltic reflex
-Law of the Gut
-Mass peristalsis
-Antiperistalsis

Mixing Movements

Peristaltic reflex
law of the Gut

1-Esophageal Motility

Types of esophageal motility:

1-primary peristalsis
2-Secondary peristalsis
*Mechanism and function of the lower esophageal sphincter*

2-Gastric Motility

Motor functions of the stomach:

1-Storage function (Receptive relaxation)
2-Mixing function
3-Stomach emptying (Hunger contractions)
Gastric emptying

3-Intestinal Motility

1-Mixing contractions (Segmentation contractions)

2-propulsive movements:

-Peristalsis
-Peristaltic rush
Mixing Movements



Function of the ileocecal valve
A principal function of the ileocecal valve is to prevent backflow of fecal contents from the colon into the small intestine.

4-Colon Motility

1-Mixing movements (Haustrations)
2-Propulsive movements (Mass movements)
3-Defecation



·      The central autonomic nervous system (hypothalamus and brain stem) mediates its influence on the gastrointestinal function through the intrinsic, enteric nervous system (the so-called “little brain”).
·      Cannons law of the gut: The peristalsis of the small intestine always proceeds in the oral- aboral direction.
·      Achlorhydria refers to absence of HCl production in the stomach
·      Defaecation is a reflex act involving colon, rectum, anal sphincters and many striated muscles (diaphragm, abdominal and pelvic muscles). The motor pathway is the pelvic nerves. Defaecation implies a temporal release of anal continence brought about by a reflex. The coordinating centre is in the sacral spinal cord.
·      Enterogastrones are enterogastric inhibitory hormones liberated from the duodenal mucosa by acid chyme (ie, cholecystokinin: CCK, gastric inhibitory peptide: GIP, secretin, somatostatin, neurotensin and vasoactive intestinal peptide: VIP).
·      Haematemesis is defined as vomiting of whole blood or blood clots.
·      Incretins are hormones, which increase insulin secretion from the b-cells of the pancreatic islets much earlier and to a greater extent, than when the blood glucose concentration is elevated by intravenous infusion (GIP, glicentin, glucagon-like peptides-1 and -2).
·      Intrinsic, enteric nervous system refers to the large number of neuronal connections in the gut wall, in particular the submucosal Meissner plexus,which regulates the digestive glands, and the myenteric Auerbach plexus,primarily connected with gut motility.
·      Macrolides are antibiotics, which bind to and prevent translocation on bacterial ribosomes.
·      Malabsorption describes the condition resulting from inefficient absorption of nutrients by the gastrointestinal tract.
·      Melaena is defined as passage of dark tarry stools (coal-black, shiny, sticky, and foul smelling).
·      Migrating motor complex refers to a gastric sequence of events, where contractions occur each 90 min during fasting. There is a quiet period (I) followed by a period of irregular contraction (II), and culminated with aperistaltic rush (III) accompanied by increased gastric, pancreatic and biliary secretion.
·      NANC neurons are non-adrenergic, non-cholinergic postganglionic neurons, which liberate gastrin-releasing peptide (GRP) to the gastrin producing G-cells.
·      Nitric oxide (NO) is a possible neurotransmitter between the preganglionic and the NANC postganglionic neurons.
·      Paracrine secretion is the release of signal molecules to neighbour cells.
·      Peptide hormone families are groups of hormones that exhibit sequence homology: They possess a common amino acid sequence, such as thegastrin family, which has sequence homology in their terminal penta-peptide. Peptide hormones have autocrine and paracrine functions in the gastrointestinal tract.
·      Peristalsis is a propagating contraction of successive sections of circular smooth muscle preceded by a dilatation. The dilatated intestinal wall is drawn over its content in this reflex mechanism, which transports the content aborally and is called the law of the gut.
·      Segmentation divides the small intestine into many segments by localised circular smooth muscle contractions. Segmentation mixes the intestinal content and propagate it at a slow rate, which allows sufficient time for digestion and absorption.
·      Slow waves (basic electrical rhythm) are slow gastrointestinal depolarisation’s occurring at a frequency of 3-18 per min. The slow waves change the resting membrane potential of smooth muscles from -50 to -40 mV.
·      Spike potentials are periodic fast waves of depolarisation that most often follow a slow wave, and then always initiate gastric contractions (elicited by a rise in cytosolic [Ca2+]).
·      Vaso-active intestinal peptide (VIP) is a vasodilatator in line with adenosine, ATP, NO. The increased bloodflow increases intestinal secretion.












Tuesday, December 21, 2010

21/12 Fisiologia ¬ Secreciones




21/12 Embriologia ¬ Sistema digestivo

  • Desarrollo Temprano
ø ENDODERMO del intestino primitivo.
¬ Cuarta semana
¬ Membrana bucofaringea: Se rompe en cuarta semana 
¬ Hasta membrana cloacal: Desaparece en septima semana







ø ECTODERMO del estomodeo y del proctodeo: Pocos organos cefalicos y caudales.

APORTAN LA MUCOSA

ø MESODERMO CIRCUNDANTE: capa musculoconectiva y parenquima de glandulas anexas. 

ø CAVIDAD PERITONEAL: en este espacio crecen visceras sostenidas por mesos. 



Beginning at week 5 endoderm in the GIT wall proliferates to the extent of totally blocking (occluding) by week 6, over the next two weeks this tissue degenerates reforming a hollow gut tube. The process is called recanalization (hollow, then solid, then hollow again), abnormalities in this process can lead to duplications or stenosis. By the end of week 8 the GIT endoderm tube is a tube once more.


TUBO INTESTINAL - 5 SECTORES

1. FARINGE PRIMITIVA

2. INTERTINO ANTERIOR
¬ Esofago
¬ Estomago
¬ Duodeno
¬ Pancreas
¬ Higado


3. INTESTINO MEDIO
¬ Duodeno
¬ Yeyuno
¬ Ileon
¬ Ciego
¬ Colon ascendente
¬ 2/3 proxomales del colon transverso
¬ Desemboca el conducto vitelino

4. INTESTINO POSTERIOR
¬ 1/3 distal del colon transverso, descendente, sigmoideo

5. CLOACA
¬ Adosado al ectodermo superficial
¬ Membrana cloacal: donde nace el proctodeo 
¬ Alantoides: pared ventral de la cloaca
¬ Conductos de Wolff: desembocan en sus paredes laterales.
¬ Tabique urorectal 
-Seno Anorrectal - parte cefalica del conducto anal
-Seno urogenital - sistema urinario
- Engrosamiento mesodermico: Perineo primitivo [membrana anal y membrana urogenital]

  • Irrigacion
-Estomodeo y faringe primitiva: ARCOS AORTICOS
-Intestino Anterior: Arterias segmentarias ventrales

-Intestino Medio: partes proximales de las arterias vitelinas precursoras de la mesenterica superior. 
-Intestino posterior y seno anorrectal:segmentarias ventrales, mesenterica inferior
-Proctodeo: 5to par de intersegmentarias.

  • ESOFAGO
¬ Intestino anterior: Esbozo laringo traqueal. 
¬ Tabique traqueo esofagico
¬ Par X

  • ESTOMAGO
¬ Dilatacion del intestino anterior
¬ Borde dorsal: CURVATURA MAYOR
¬ Borde Ventral: CURVATURA MENOR
¬ Rota 90˙
¬ PILORO: a la derecha.


  • DUODENO
¬ 1ra - Intestino anterior
¬ El resto del intestino medio. 
¬ El limite es la desembocadura de los cnductos excretores del pancreas e higado.
¬ Arterias: Iliaca y mesenterica superior.
¬ Cuando el estomago rota el duodeno gira en el mismo sentido



  • VIAS BILIARES E HIAGADO
¬ Evaginacion hueca de la cara ventral del duodeno.
¬ Trayecto en el mesoduodeno ventral
¬ Brotes: 
1. Pequeno: Precursores de vesicula biliar y Conducto cistico 
2. Grande: Parenquima hepatico. Ingresa al mesogastio ventral y su endodermo invade el mesodermo del septum transverso. Da origen a vias viliares intrahepaticas y a los hepatocitos. 
¬ COLEDOCO: entre duodeno y los brotes.


TRIPLE ORIGEN DEL HIGADO:

I. Estroma conectivo: MESODERMO del SEPTUM TRANSVERSO
II.  Parenquima: ENDODERMO del ESBOZO HEPATICO - brote mayor
III. Capilares: VENAS VITELINAS


-La parte proximal del brote mayor - conducto hepatico que desemboca en el coledoco.


  • PANCREAS
¬ Esbozos ENDODERMICOS de la cara ventral del duodeno.
¬ otro del coledoco: cara ventral del intestino

¬ ESBOZO DORSAL: evaginacion hueca que crece en el espesor del mesoduodeno dorsal.

¬ ESBOZO VENTRAL crece en el espesor del mesoduodeno ventral. Crece en forma diferencial. 

¬ Los conductos se fusionan: CONDUCTO PRINCIPAL DE WIRSUNG (distal)
¬ CONDUCTO ACCESORIO De SANTORINI: proximal del conducto pancreatico.
¬ Adenomeros surgen en el extremo distal del conducto pancreatico
¬ Capsula y tabiques conectivos: MESODERMO CIRCUNDANTE.
¬ ISLOTES: brotes macizos de la pared del conducto pancreatico.
¬ INSULINA: 3er mes de vida.

  • INTESTINO
¬ Alargamiento de 5ta semana genera el asa intestinal.
¬ Donde se unen las ramas cefalica y caudal nace el conducto vitelino que ocupa el celoma umbilical.
¬ HERNIA UMBILICAL FISIOLOGICA: El asa intestinal es forzada a ingresar al celoma umbilical porque el abdomen no tiene lugar. La salida es cuando el celoma se desocupa por la desaparicion del conducto vitelino.
¬ 1. El asa gira 90˙ por el eje de la mesenterica superior, en sentido contrario a las agujas del reloj. 
¬ 2. En el mismo sentido que la primera pero 180˙
¬ Rotacion final 270˙

¬ RAMA CEFALICA: es la primera que regresa al abdomen, se alarga y se convierte en el yeyuno y parte proximal del ileon




View from left hand side of embryo facing left. Sequence spans approx 6-11 weeks of development. There is an initial 90 degree rotation followed by 2 more 90 degree rotations to give 270 degrees total. The upper GIT is shader light green, the red vessel is the superior mesenteric artery off the dorsal aorta.


¬ Ultimo sector del intestino medio da origen al ciego. 
¬ EL ciego desciende a la fosa iliaca derecha y se forma el colon ascendente
¬ Intestino posterior: se localiza donde se unen los tercios proximales con el tercio distal del colon transverso.
¬ Ciego: apendice cecal
¬ Recto: de la parte dorsal de la cloaca (seno anorrectal)

  • CONDUCTO ANAL Y ANO
1. ENDODERMO del seno anorrectal
2. ECTODERMO del proctodeo




http://embryology.med.unsw.edu.au/